
Serpent is a modern block cipher published in 1998. It was one of the 5 finalists in the AES contest.

It had the least number of negative votes and the second greatest positive vote count after

Rijndael.

The cipher is a substitution-permutation network (SPN) consisting of 32 rounds (even though 16

rounds were deemed secure enough at the time of publication). Each round except the last

consists of a key mixing operation, substitution (using 32 parallel 4-bit S-boxes) and a linear

transformation. In the last round, the linear transformation is replaced by an additional key mixing

step (this technique is known as input and output whitening).

There are 8 S-boxes used in Serpent; each one being used in 4 rounds (hence a total of 32 rounds).

The S-boxes were generated deterministically from a nothing-up-my-sleeve seed and chosen based

on their linear biases and differential characteristics, so that they would resist known

cryptanalytical attacks.

As an AES candidate, Serpent offered 128, 192 and 256-bit keys. However, by design, it can accept

any key between 0 and 256 bits inclusive. Any key that has less than the full 256 bits (a short key)

is padded to 256 bits by appending a single bit and then as many bits as needed.

The full 256-bit key is written as 8 32-bit words and expanded into 132 32-bit

words (collectively called the prekey) using the recurrent expression

where denotes XOR and a left bit rotate.

A bitslice-mode S-box (see later) is applied to 4 words of the prekey at a time, producing 33 128-

bit subkeys (round keys). The concrete S-box is changed for every round key, starting with and

going forward modulo 8.

The algorithm specification describes two possible approaches to implementing Serpent.

Formally, the Serpent round operates on state consisting of 32 4-bit chunks of data (the same S-

box is applied 32 times in parallel). Similarly to DES, this is efficient in hardware, but not in

software.

In the so-called "bitslice mode", the state is rearranged into 4 32-bit words, where the first bits of

each word correspond to the first 4-bit chunk in the formal description, etc.

A caveat not explicitly stated in the specification is that Serpent treats input data (i.e.

plaintexts and ciphertexts) as already converted to the bitslice representation.

This means that when the "canonical" implementation is chosen, the input and output bits (as well

as individual subkeys) have to be permuted back from the default bitslice mode. This

makes sense given the fact that in a hardware implementation, permuting bits is basically free,

while in software, bit permutations are slow and painful to implement.

Serpent

Construction

Key expansion

1 0

K w−8, … , w−1
w0, … , w131

wi = (wi−8 ⊕ wi−5 ⊕ wi−3 ⊕ wi−1 ⊕ ϕ ⊕ i) <<< 11,

⊕ <<<

S3

Implementation

In Serpent, for some godforsaken reason, everything is backwards.

Externally, blocks are accepted and presented as 128-bit numbers; the (user) key is interpreted as

a sequence of bits. (An incredible formalization choice for a cipher that might commonly be

implemented on a system where 128-bit ints aren't a thing.)

The user key is expanded to 256 bits like described before. On the other hand, the key expansion

aceepts the key as an array of 8 32-bit words. Naturally, this is done by taking bits 0-31 of the

input sequence and setting bit 0 as the least significant bit of the first key word and bit 31 as the

most significant (and similarly for the other words). Note that not only are the key bytes

interpreted as little-endian, the bit order is reversed too! So, for example, the correct way to

pad a 128-bit key (in C) is this:

and not this:

Serpent algorithm specification paper

Revision #8

Created 19 March 2025 22:09:31 by Annatar

Updated 26 March 2025 19:03:42 by Annatar

Data representation

void serpent_pad_128bit_key(uint8_t key[32]){ key[16] = 0x01; memset(&key[17], 32 - 17,

0x00);}

void bad_pad_128bit_key(uint8_t key[32]){ key[16] = 0x80; memset(&key[17], 32 - 17, 0x00);}

References

https://www.cl.cam.ac.uk/archive/rja14/Papers/serpent.pdf

