
This will be more of an anecdotal testimony of my naiveté than a straight-to-the-point writeup, as

I'm sure there will be a lot of those out there.

We are given a zip with a standard PE Windows executable. The first step in my analysis is almost

always to drop the binary into something like ExeinfoPE or Detect It Easy to detect any packers,

crypters or specific compilers being used. Interestingly, in this instance, ExeinfoPE reported that

the executable was compressed using something called "MEW 11 SE v1.1" — I spent some minutes

looking for unpackers or just any code or blog posts explaining what this packer does, but to no

avail.

As it turned out, the binary was not packed or tampered with in any meaningful way. The caveat

was that it was not compiled from C or C++ code, but rather using the Go programming language

and the Go compiler, which I have never dealt with before in my (albeit short) career as a reverse

engineer. (As a matter of fact, I feel no shame in admitting I have never dealt with any Go code at

all.)

The first challenge was hence to understand the Golang ABI, which differed in many aspects from

the traditional Windows and Linux C/C++ ABIs I knew. I learned that parameters and return values

are passed between caller and callee functions preferentially through registers — in fact quite

many of them. Whereas for example the Windows 64bit C/C++ ABI makes use of 4 registers (rcx,

rdx, r8 and r9, in that order) for passing arguments to functions and only one (rax) for return

values, the Go ABI uses 9 (rax, rbx, rcx, rdi, rsi, r8, r9, r10 and r11, in that order) for both

argument passing and return values. (Like in other ABIs, the remaining values are passed on the

stack.) Furthermore, as Go supports returning multiple values from a function, it is often the case

that a function will return either a meaningful value or nil  as the first return value and an error

code (where 0 means no error) as the second. All of this took some figuring out and getting used

to, but once I had overcome this hurdle, reading compiled (non-stripped) Go code was actually

surprisingly easy.

Analyzing the binary, I figured out (what I thought was) the basic high-level operation of the

program:

1. A pseudorandom number  between 3 and 7 is chosen.

2. Then,  times, the user is asked to compute the sum of two numbers (pseudorandomly

generated) and the answers are checked for correctness. If incorrect, the program

terminates.

3. After  successful answers, the user is prompted for a "Checksum", which must be a 64-

character ASCII hex string that is then parsed to a 32-byte array.

Challenge 2 ("checksum")

Description

We recently came across a silly executable that appears benign. It just asks us

to do some math... From the strings found in the sample, we suspect there [is]

more to the sample than what we are seeing. Please investigate and let us know

what you find!

“

Writeup

n

n

n



4. The encrypted flag stored in the binary is decrypted using the ChaCha20-Poly1305

authenticated encryption scheme (AEAD) with said byte array serving as the 256-bit key

(and, simultaneously, the first 192 bits of the array serving as the nonce).

5. The SHA256 sum of the plaintext is computed and compared against the checksum

provided by the user. The program is terminated in case of a mismatch. Note that such a

check would make no sense in a real scenario, as the integrity of the plaintext is already

guaranteed by the Poly1305 digest — if the decrypted data were wrong, the decryption

procedure would report a failure straight away. Thus, this was nothing more than a note

to the reverse engineer about what the checksum needed to be.

After learning this, I was baffled. So baffled that I didn't realize that I had skipped the analysis of

one more function, called main_a , which was being called at the very end before the program

would report success. I even went as far as to look into the ChaCha20 key scheduling algorithm to

look for a potential way to reduce the keyspace using the combined fact that the nonce was equal

to the key and that I knew the first 2 bytes of the plaintext (since the program clearly expected the

plaintext to be a JPEG file, the first two bytes would be FF D8 ). Of course, I soon realized that being

able to reduce the keyspace in any meaningful way would be a massive flaw in the cipher, and it

was just as clear to me that this was way too advanced for the second challenge. I finally

remembered I had skipped the main_a  function and came back to it.

The workings of main_a  were stupidly simple. The original buffer with the input (still in ASCII) was

"XOR-encrypted" with the key FlareOn2024 , then base64-encoded and compared to the fixed string

cQoFRQErX1YAVw1zVQdFUSxfAQNRBXUNAxBSe15QCVRVJ1pQEwd/WFBUAlElCFBFUnlaB1ULByRdBEFdfVtWVA==  located

in the .rdata  section. If the two strings compared equal, the program printed a success message

and dropped a JPEG file containing the flag.

So after all these cryptographic shenanigans, the solution was handed to us on a silver platter. All

we had to do is reverse these last steps, which was trivial:

Which prints '7fd7dd1d0e959f74c133c13abb740b9faa61ab06bd0ecd177645e93b1e3825dd'  — the desired

checksum. After entering this checksum into the program, the flag is dropped into the

AppData/Local  user directory.

from base64 import b64decodect =

b64decode('cQoFRQErX1YAVw1zVQdFUSxfAQNRBXUNAxBSe15QCVRVJ1pQEwd/WFBUAlElCFBFUnlaB1ULByRdBEFdfVt

WVA==')key = ('FlareOn2024' * 10)[:64].encode()pt = "".join([chr(ct[i] ^ key[i]) for i in

range(len(ct))])print(pt)



While this crackme took me longer to solve than I would have liked, it was well worth it, as I

learned valuable things along the way. I now know how to approach reversing binaries compiled

using Go, I understand the ABI, calling conventions and even the implementation of some types

(like slices). I know where to find the Go standard library source code and that HChaCha20  and

hChaCha20  are two completely different functions with different parameters (I guess Google

developers are just built different).

But most importantly, I was reminded that while I was able to reverse engineer the program —

especially the more complex parts that require non-trivial cryptographic knowledge — with relative

ease, I still have much to learn in terms of the approach to take when reversing. If I had started

working back from the end goal instead of from the start, I likely would have found the solution a

lot sooner.

Revision #2

Created 23 December 2024 20:55:14 by Annatar

Updated 24 December 2024 16:28:07 by Annatar

A humbling lesson

https://vault.annatar.re/uploads/images/gallery/2024-12/X97htthvBC18c9k3-checksum.jpg
https://vault.annatar.re/uploads/images/gallery/2024-12/X97htthvBC18c9k3-checksum.jpg

