
The third challenge, "aray", was a favourite of mine. Everything about this challenge was enjoyable

— the idea, the problem, and maybe especially the name.

The provided archive contains a single file — aray.yara . Indeed, this is a valid YARA file containing

a single rule, aray . The condition is a giant AND clause with all kinds of terms — constraints on the

values of individual bytes, doublewords, or hashes (MD5, SHA-256, CRC32) of specific parts of the

file.

To improve readability, I first searched and replaced every occurence of and<space> with

and<newline> . The first line of the condition asserts that the size of the file is 85 bytes. The

following line provides us with the hash of the whole file contents. The rest of the conditions

operate on a specific chunk of the file.

It was apparent that a lot of the conditions were superfluous or irrelevant - for example, a lot of

them put constraints on the filesize, even though we already knew that from the first line. Next,

many lines were of the form <some part of the file> % x < x , which is a tautology.

After going through a couple of lines and trying to reconstruct the file contents by hand, I thought

a Python script would be faster, less error-prone and, above all else, the most satisfying. So I saved

the newline-separated list of conditions into a separate file and wrote the following solver.

Challenge 3 ("aray")

Description

And now for something completely different. I'm pretty sure you know how to

write Yara rules, but can you reverse them?
“

Writeup

import binasciiimport hashlibimport refrom sys import argvdef strings_of_length(strlen): if

strlen == 0: yield '' else: for s in strings_of_length(strlen - 1):

for c in [chr(i) for i in range(32, 127)]: yield c + sdef reverse_crc32(h,

strlen): for s in strings_of_length(strlen): if binascii.crc32(s.encode()) &

0xFFFFFFFF == int(h, 16): return s return Nonedef reverse_md5(h, strlen): for

s in strings_of_length(strlen): if hashlib.md5(s.encode()).hexdigest() == h:

return s return Nonedef reverse_sha256(h, strlen): for s in strings_of_length(strlen):

if hashlib.sha256(s.encode()).hexdigest() == h: return s return Nonedef main():

with open(argv[1], 'r') as f: lines = f.readlines() buffer = None file_md5

= None for line in lines: if re.match(r'filesize == \d+ and', line):

filesize = int(line.split(' ')[2]) buffer = [None for _ in range(filesize)]

elif re.match(r'hash.md5\(0, filesize\) ==', line): file_md5 = re.match(r'hash.md5\

(0, filesize\) == "([0-9a-f]+)"', line).group(1) elif re.match(r'hash.

(md5|sha256)\(\d+, \d+\) ==', line): eq = re.match(r'hash.(md5|sha256)\((\d+),

(\d+)\) == "([0-9a-f]+)" and', line) which = eq.group(1) idx, length =

int(eq.group(2)), int(eq.group(3)) digest = eq.group(4) plaintext =

(reverse_md5(digest, length) if which == 'md5'

(It's not my proudest creation, but it gets the job done. Also, at least some of the ugliness can be

blamed on my faithful servant, GitHub Copilot.)

At first, I assumed the uint32 s were big endian, but after correcting my mistake, the MD5 hash

finally matched and I got the flag:

Revision #2

Created 23 December 2024 21:03:14 by Annatar

Updated 23 December 2024 21:13:47 by Annatar

else reverse_sha256(digest, length)) assert buffer[idx:idx+length].count(None) ==

length buffer[idx:idx+length] = plaintext print(f'[{idx}..{idx+length}]

= {plaintext}') elif re.match(r'hash.crc32\(\d+, \d+\) ==', line):

eq = re.match(r'hash.crc32\((\d+), (\d+)\) == 0x([0-9a-f]+)', line) idx, length,

crc = int(eq.group(1)), int(eq.group(2)), eq.group(3) plaintext =

reverse_crc32(crc, length) assert buffer[idx:idx+length].count(None) == length

buffer[idx:idx+length] = plaintext print(f'[{idx}..{idx+length}] = {plaintext}')

elif re.match(r'uint(8|32)\(\d+\) [+-^] \d+ == \d+', line): eq =

re.match(r'uint(8|32)\((\d+)\) ([+-^]) (\d+) == (\d+)', line) size =

int(eq.group(1)) // 8 idx = int(eq.group(2)) op = eq.group(3)

a = int(eq.group(4)) b = int(eq.group(5)) if op == '+':

result = (b - a).to_bytes(size, 'little').decode() elif op == '-':

result = (b + a).to_bytes(size, 'little').decode() elif op == '^':

result = (b ^ a).to_bytes(size, 'little').decode() assert

buffer[idx:idx+size].count(None) == size buffer[idx:idx+size] = result

print(f'[{idx}..{idx+size}] = {result}') assert buffer.count(None) == 0

print(''.join(buffer)) print(f'Expected MD5: {file_md5}') print(f'Actual MD5:

{hashlib.md5("".join(buffer).encode()).hexdigest()}')main()

...rule flareon { strings: $f = "1RuleADayK33p$Malw4r3Aw4y@flare-on.com" condition: $f

}Expected MD5: b7dc94ca98aa58dabb5404541c812db2Actual MD5: b7dc94ca98aa58dabb5404541c812db2

