
I will admit that while I was not expecting to see Verilog in a CTF, I was not caught entirely off-

guard, thanks to a mandatory course (and in my opinion, one of the coolest courses) at my

university, in which you're required to design a single-scalar RISC-V CPU and describe it using this

very language.

The challenge turned out not to be very hard if you just looked in the right place, which neither I

nor most people that I know or whose posts I have read have. Looking back, I think it's safe to say

that it wasn't a very well designed challenge, since apparently, someone solved it using a single

ChatGPT prompt, and as such, I will not be going into great depths in this writeup.

The several verilog files in the archive describe a hardware implementation of a modification of the

Blake2 hash function, specifically its variants Blake2b and Blake2s, which differ basically only in

their respective block sizes. Namely, the files bloke2s.v and bloke2b.v define specializations of a

generic module in bloke2.v , which consists of a "data manager" (data_mgr.v) and a compression

function (f_unit.v), which in turn utilises a scheduler module (f_sched.v) and an inner function

 (g_unit.v). From my observations, the function, the number of rounds, initialization vectors, as

Challenge 6 ("bloke2")

Description

You’ve been so helpful lately, and that was very good work you did. Yes, I’m

going to put it right here, on the refrigerator, very good job indeed. You’re the

perfect person to help me with another issue that came up.

One of our lab researchers has mysteriously disappeared. He was working on

the prototype for a hashing IP block that worked very much like, but not

identically to, the common Blake2 hash family. Last we heard from him, he was

working on the testbenches for the unit. One of his labmates swears she knew

of a secret message that could be extracted with the testbenches, but she

couldn’t quite recall how to trigger it. Maybe you could help?

“

Details

(...)

You should be able to get to the answer by modifying testbenches alone,

thoughthere are some helpful diagnostics inside some of the code files which

you could uncomment if you want a look at what's going on inside. Brute-forcing

won'treally help you here; some things have been changed from the true

implementationof Blake2 to discourage brute-force attempts.

(...)

“

Writeup

f
g g

https://github.com/stong/flare-on-2024-writeups/tree/master/6-bloke2
https://github.com/stong/flare-on-2024-writeups/tree/master/6-bloke2
https://datatracker.ietf.org/doc/html/rfc7693

well as the SIGMA permutation and R0,R1,R2,R3 rotation constants are identical between Blake and

Bloke. I suspect the difference is in the construction of the compression function , however, I did

not confirm this and it turned out not to be relevant to the challenge at all.

In fact, none of the inner workings or properties of the hash function were relevant. The key to

solving the riddle was hidden on line 53 of data_mgr.v :

This suspiciously looking "test value" of course contains the encrypted flag. Tracking down where

this data gets read leads to line 67 of the same file:

which depends on tst , which is a register (line 28, reg tst;) that is assigned the value of the

finish input wire (line 40, tst <= finish;) on every start or rst signal. The finish input wire is

set in bloke2.v on line 60 and transitively in either testbench on line 22. Effectively, the value of

tst is determined by the value assigned to the finish register on line 59 of either testbench.

Changing the value from 1'b0 to 1'b1 in bloke2b.v , leaving only the test case

hash_message("abc"); and running make tests produces the flag:

Revision #1

Created 23 December 2024 23:07:00 by Annatar

Updated 24 December 2024 00:09:30 by Annatar

f

localparam TEST_VAL =

512'h3c9cf0addf2e45ef548b011f736cc99144bdfee0d69df4090c8a39c520e18ec3bdc1277aad1706f756affca41

178dac066e4beb8ab7dd2d1402c4d624aaabe40;

h <= h_in ^ (TEST_VAL & {(W*16){tst}});

vvp f_sched.test.outiverilog -g2012 -o bloke2b.test.out bloke2.v f_sched.v f_unit.v

g_over_2.v g.v g_unit.v data_mgr.v bloke2s.v bloke2b.v bloke2b_tb.vvvp

bloke2b.test.out706c656173655f73656e645f68656c705f695f616d5f747261707065645f696e5f615f6374665f

666c61675f666163746f727940666c6172652d6f6e2e636f6dReceived message:

please_send_help_i_am_trapped_in_a_ctf_flag_factory@flare-on.com

